The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.
نویسندگان
چکیده
Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R2=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg.
منابع مشابه
Effects of Prosthesis Mass on Hip Energetics, Prosthetic Knee Torque, and Prosthetic Knee Stiffness and Damping Parameters Required for Transfemoral Amputees to Walk
We quantify how the hip energetics and knee torque required for an above-knee prosthesis user to walk with the kinematics of able-bodied humans vary with the inertial properties of the prosthesis. We also select and optimize passive mechanical components for a prosthetic knee to accurately reproduce the required knee torque. Previous theoretical studies have typically investigated the effects o...
متن کاملEffects of Prosthesis Mass on Hip Energetics, Prosthetic Knee Torque, and Prosthetic Knee Stiffness and Damping Parameters Required for Transfemoral Amputees to Walk with Normative Kinematics
We quantify how the hip energetics and knee torque required for an above-knee prosthesis user to walk with the kinematics of able-bodied humans vary with the inertial properties of the prosthesis. We also select and optimize passive mechanical components for a prosthetic knee to accurately reproduce the required knee torque. Previous theoretical studies have typically investigated the effects o...
متن کاملDesign and Evaluation of a Magnetorheological Damper Based Prosthetic Knee
In this work, a magnetorheological (MR) damper based above-knee prosthesis is design and evaluated based on its performance in swing phase and in stance phase. Initially, a dynamic system model for swing phase of a prosthetic leg incorporating a single-axis knee with ideal MR damper was built. The dynamic properties of the damper are represented with Bingham parametric model. From Bingham model...
متن کاملBiomimetic Prosthetic Knee Using Antagonistic Muscle-like Activation
The majority of commercial prosthetic knees are passive in nature and therefore cannot replicate the positive mechanical work exhibited by the natural human knee in early and late stance. In contrast to traditional purely dissipative prosthetic knees, we propose a biomimetic active agonist-antagonist structure designed to reproduce both positive and negative work phases of the natural joint whi...
متن کاملFRAGILITY CURVES FOR STRUCTURES EQUIPPED WITH OPTIMAL SATMDs
In this paper, a procedure has been presented to develop fragility curves of structures equipped with optimal variable damping or stiffness semi-active tuned mass dampers (SATMDs). To determine proper variable damping or stiffness of semi-active devices in each time step, instantaneous optimal control algorithm with clipped control concept has been used. Optimal SATMDs have been designed based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanical engineering
دوره 138 12 شماره
صفحات -
تاریخ انتشار 2016